* AREA, PERMMETER and

 Overview

 Overview}

Year 6

Overview
Area, Perimeter and Volume we learn about: -Shapes with Same Area -Area and Perimeter -Area of a Triangle -Area of a Parallelogram -What is Volume? -Volume - Counting Cubes
-Volume of a Cuboid

Area of Rectangles, Compound and Irregular Shapes

-Area is the term used to describe the amount of space taken up by a 2D shape or surface.
-Area is measured in square units - $\mathrm{cm}^{2}, \mathrm{~m}^{\mathbf{2}}$ or $\mathrm{km}^{\mathbf{2}}$.

RECTANGLES: We calculate the area of rectangles by multiplying the length by the width.

The length is 4 cm . The width is 2 cm . So, the
area is $4 \mathrm{~cm} \times 2 \mathrm{~cm}=$ $8 \mathrm{~cm}^{2}$

We can calculate the area of a rectangle on
a grid. E.g. this

$$
\text { rectangle is } 6 \text { squares } x
$$ 3 squares $=18$ squares.

IRREGULAR SHAPES: We can estimate the area of irregula shapes on grids by adding the number of whole squares to half the number of part squares.

E.g. Whole squares $=7 \quad$ Part squares $=18$
-Estimate $=7 \mathrm{~cm}$ (whole squares) +9 cm (half part squares) $=$ $16 \mathrm{~cm}^{2}$

Area of Triangles and Parallelograms

Area of Parallelograms
Area of parallelogram = base x perpendicular height.

Base $=7 \mathrm{~cm} \quad$ Perpendicular Height $=3 \mathrm{~cm}$ $7 \mathrm{~cm} \times 3 \mathrm{~cm}=\underline{21 \mathrm{~cm}^{2}}$

PERPENDICULAR HEIGHT

Perpendicular height means the height measured at a right angle from the base.

Perimeter and Area/ Volume

Perimeter and Area

Perimeter $=22 \mathrm{~cm} \quad$ Perimeter $=22 \mathrm{~cm}$
-It is important to remember that shapes with the same perimeter can have different areas.
-Likewise, shapes with the same area can have different perimeters.
-See the example on the right.

Volume of Cuboids
The volume of a cuboid is the length x the width x the height. The volume is presented in $\mathrm{cm} / \mathrm{m}^{3}$ (cubed).
E.g. The volume of the cuboid on the right is:
$6 \mathrm{~cm} \times 3 \mathrm{~cm} \times 2 \mathrm{~cm}=36 \mathrm{~cm}^{3}$.

Key Vocabulary

| Length | Height | Width | Area | Perimeter | Volume | Rase | Rectilinear | Rerpendicular (km) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

